Causal inference in epidemiological studies with strong confounding
نویسندگان
چکیده
منابع مشابه
Causal inference in epidemiological studies with strong confounding.
One of the identifiability assumptions of causal effects defined by marginal structural model (MSM) parameters is the experimental treatment assignment (ETA) assumption. Practical violations of this assumption frequently occur in data analysis when certain exposures are rarely observed within some strata of the population. The inverse probability of treatment weighted (IPTW) estimator is partic...
متن کاملConfounding Equivalence in Causal Inference
The paper provides a simple test for deciding, from a given causal diagram, whether two sets of variables have the same bias-reducing potential under adjustment. The test requires that one of the following two conditions holds: either (1) both sets are admissible (i.e. satisfy the back-door criterion) or (2) the Markov boundaries surrounding the treatment variable are identical in both sets. We...
متن کاملMendelian randomization: genetic anchors for causal inference in epidemiological studies
Observational epidemiological studies are prone to confounding, reverse causation and various biases and have generated findings that have proved to be unreliable indicators of the causal effects of modifiable exposures on disease outcomes. Mendelian randomization (MR) is a method that utilizes genetic variants that are robustly associated with such modifiable exposures to generate more reliabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Medicine
سال: 2012
ISSN: 0277-6715
DOI: 10.1002/sim.4469